On the molecular structure of human neuroserpin polymers.

نویسندگان

  • Maria Grazia Santangelo
  • Rosina Noto
  • Matteo Levantino
  • Antonio Cupane
  • Stefano Ricagno
  • Margherita Pezzullo
  • Martino Bolognesi
  • Maria Rosalia Mangione
  • Vincenzo Martorana
  • Mauro Manno
چکیده

The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. In this work, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. First, we show that two distinct neuroserpin polymers, formed at 45 and 85°C, display the same isosbestic points in the Amide I' band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45°C suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures are consistent with a model that predicts the bare insertion of portions of the reactive center loop into the A β-sheet of neighboring serpin molecule, although with different extents at 45 and 85°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is an autosomal dominant dementia that is characterized by the retention of polymers of neuroserpin as inclusions within the endoplasmic reticulum (ER) of neurons. We have developed monoclonal antibodies that detect polymerized neuroserpin and have used COS-7 cells, stably transfected PC12 cell lines and transgenic Drosophila mel...

متن کامل

Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB

Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines a...

متن کامل

Functional and dysfunctional conformers of human neuroserpin characterized by optical spectroscopies and Molecular Dynamics

Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native neuroserpin and its dysfunctional conformation isoforms: the proteolytically cleaved con...

متن کامل

Latent S49P neuroserpin forms polymers in the dementia familial encephalopathy with neuroserpin inclusion bodies.

The serpinopathies result from conformational transitions in members of the serine proteinase inhibitor superfamily with aberrant tissue deposition or loss of function. They are typified by mutants of neuroserpin that are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. We show here that the S49P mutant of neuroserpin that causes the dementi...

متن کامل

Mutant Neuroserpin (S49P) that causes familial encephalopathy with neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro.

Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is an autosomal dominant dementia that is characterized by intraneuronal inclusions of mutant neuroserpin. We report here the expression, purification, and characterization of wild-type neuroserpin and neuroserpin containing the S49P mutation that causes FENIB. Wild-type neuroserpin formed SDS-stable complexes with tPA with an as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 80 1  شماره 

صفحات  -

تاریخ انتشار 2012